Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
1.
Virol J ; 20(1): 13, 2023 01 20.
Article in English | MEDLINE | ID: covidwho-2214603

ABSTRACT

BACKGROUND: Porcine epidemic diarrhea virus (PEDV) variant strains cause great economic losses to the global swine industry. However, vaccines do not provide sufficient protection against currently circulating strains due to viral mutations. This study traced the molecular characteristics of the most recent isolates in China and aimed to provide a basis for the prevention and treatment of PEDV. METHODS: We obtained samples from a Chinese diarrheal swine farm in 2022. Reverse transcription polymerase chain reaction and immunofluorescence were used to determine the etiology, and the full-length PEDV genome was sequenced. Nucleotide similarity was calculated using MEGA to construct a phylogenetic tree and DNASTAR. Mutant amino acids were aligned using DNAMAN and modeled by SWISS-MODEL, Phyre2 and FirstGlance in JMOL for protein tertiary structure simulation. Additionally, TMHMM was used for protein function prediction. RESULTS: A PEDV virulent strain CH/HLJJS/2022 was successfully isolated in China. A genome-wide based phylogenetic analysis suggests that it belongs to the GII subtype, and 96.1-98.9% homology existed in the whole genomes of other strains. For the first time, simultaneous mutations of four amino acids were found in the highly conserved membrane (M) and nucleocapsid (N) proteins, as well as eight amino acid mutations that differed from the vast majority of strains in the spike (S) protein. Three of the mutations alter the S-protein spatial structure. In addition, typing markers exist during strain evolution, but isolates are using the fusion of specific amino acids from multiple variant strains to add additional features, as also demonstrated by protein alignments and 3D models of numerous subtype strains. CONCLUSION: The newly isolated prevalent strain CH/HLJJS/2022 belonged to the GII subtype, and thirteen mutations different from other strains were found, including mutations in the highly conserved m and N proteins, and in the S1° and COE neutralizing epitopes of the S protein. PEDV is breaking through original cognitions and moving on a more complex path. Surveillance for PEDV now and in the future and improvements derived from mutant strain vaccines are highly warranted.


Subject(s)
Coronavirus Infections , Porcine epidemic diarrhea virus , Swine Diseases , Viral Vaccines , Swine , Animals , Phylogeny , Mutation , Viral Vaccines/genetics , Amino Acids/genetics , China/epidemiology , Coronavirus Infections/diagnosis , Coronavirus Infections/prevention & control , Coronavirus Infections/veterinary , Swine Diseases/epidemiology
3.
Nat Commun ; 12(1): 4664, 2021 08 02.
Article in English | MEDLINE | ID: covidwho-1338538

ABSTRACT

Excessive inflammatory responses induced upon SARS-CoV-2 infection are associated with severe symptoms of COVID-19. Inflammasomes activated in response to SARS-CoV-2 infection are also associated with COVID-19 severity. Here, we show a distinct mechanism by which SARS-CoV-2 N protein promotes NLRP3 inflammasome activation to induce hyperinflammation. N protein facilitates maturation of proinflammatory cytokines and induces proinflammatory responses in cultured cells and mice. Mechanistically, N protein interacts directly with NLRP3 protein, promotes the binding of NLRP3 with ASC, and facilitates NLRP3 inflammasome assembly. More importantly, N protein aggravates lung injury, accelerates death in sepsis and acute inflammation mouse models, and promotes IL-1ß and IL-6 activation in mice. Notably, N-induced lung injury and cytokine production are blocked by MCC950 (a specific inhibitor of NLRP3) and Ac-YVAD-cmk (an inhibitor of caspase-1). Therefore, this study reveals a distinct mechanism by which SARS-CoV-2 N protein promotes NLRP3 inflammasome activation and induces excessive inflammatory responses.


Subject(s)
COVID-19/metabolism , Coronavirus Nucleocapsid Proteins/metabolism , Inflammasomes/metabolism , Inflammation/metabolism , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , SARS-CoV-2/metabolism , Animals , COVID-19/virology , Cells, Cultured , Cytokines/metabolism , HEK293 Cells , Humans , Inflammasomes/genetics , Lung Injury/genetics , Lung Injury/metabolism , Male , Mice, Inbred C57BL , Mice, Knockout , NLR Family, Pyrin Domain-Containing 3 Protein/genetics , Phosphoproteins/metabolism , Protein Binding , SARS-CoV-2/physiology , THP-1 Cells
4.
Biosci Trends ; 14(1): 64-68, 2020 Mar 16.
Article in English | MEDLINE | ID: covidwho-8517

ABSTRACT

Pneumonia associated with the 2019 novel coronavirus (2019-nCoV) is continuously and rapidly circulating at present. No effective antiviral treatment has been verified thus far. We report here the clinical characteristics and therapeutic procedure for four patients with mild or severe 2019-nCoV pneumonia admitted to Shanghai Public Health Clinical Center. All the patients were given antiviral treatment including lopinavir/ritonavir (Kaletra®), arbidol, and Shufeng Jiedu Capsule (SFJDC, a traditional Chinese medicine) and other necessary support care. After treatment, three patients gained significant improvement in pneumonia associated symptoms, two of whom were confirmed 2019-nCoV negative and discharged, and one of whom was virus negative at the first test. The remaining patient with severe pneumonia had shown signs of improvement by the cutoff date for data collection. Results obtained in the current study may provide clues for treatment of 2019-nCoV pneumonia. The efficacy of antiviral treatment including lopinavir/ritonavir, arbidol, and SFJDC warrants further verification in future study.


Subject(s)
Antiviral Agents/therapeutic use , Betacoronavirus , Coronavirus Infections/drug therapy , Drugs, Chinese Herbal/therapeutic use , Indoles/therapeutic use , Lopinavir/therapeutic use , Pneumonia, Viral/drug therapy , Ritonavir/therapeutic use , Adult , COVID-19 , China , Drug Combinations , Female , Humans , Male , Middle Aged , Retrospective Studies , SARS-CoV-2 , Young Adult , COVID-19 Drug Treatment
SELECTION OF CITATIONS
SEARCH DETAIL